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a b s t r a c t

Query difficulty estimation (QDE) attempts to automatically predict the performance of
the search results returned for a given query. QDE has long been of interest in text
retrieval. However, few research works have been conducted in image retrieval. Existing
QDE methods in image retrieval mainly explore the statistical characteristics (coherence,
specificity, etc.) of the returned images to derive a value for indicating the query difficulty
degree. To the best of our knowledge, little research has been done to directly estimate
the real search performance, such as average precision. In this paper, we propose a novel
query difficulty estimation approach which automatically estimates the average precision
of the image search results. Specifically, we first adaptively select a set of query relevant
and query irrelevant images for each query via modified pseudo relevance feedback. Then
a simple but effective voting scheme and two estimation methods (hard estimation and
soft estimation) are proposed to estimate the relevance probability of each image in the
search results. Based on the images' relevance probabilities, the average precision for each
query is derived. The experimental results on two benchmark image search datasets
demonstrate the effectiveness of the proposed method.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

The state-of-the-art image search systems suffer from a
radical variance in retrieval performance over various
queries. For some queries, they are easy to be retrieved
(the search engine can return very good search results).
While for others, they are difficult (the search results are
very unsatisfactory). For instance, Fig. 1 shows the top-10
ranked images of three queries returned by an image search
engine [16]. It illustrates that this search system performs
well on query “Pantheon Rome” with 9 out of 10 relevant
images returned, but poor on query “bird” with only 2 out
of 10 relevant images returned. Thus, it is desirable for the
image search engines to identify “difficult” queries in order
to handle them properly.

Query difficulty estimation (QDE) attempts to estimate
the search difficulty level for a given query by predicting
the retrieval performance of the search results returned
for this query without relevance judgments or user feed-
back [17]. Such technique can allow users or search
engines to provide better search experience. For users,
they can rephrase the “difficult” queries to improve the
search results if an instant feedback of query difficulty is
provided. For search engines, they can adopt alternative
retrieval strategies (reranking, query suggestion, etc.) for
different queries via the estimated query difficulty.

QDE has been investigated in text retrieval for several
years and many valuable approaches have been proposed
[1–5,17,23]. However, in image retrieval, little research has
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Fig. 1. Top-10 ranked images for three queries (“Pantheon Rome”, “banana”, “bird”) returned by a text-based image search engine, ordered left to right.
Query-relevant images are marked by red “☑”. It illustrates that this image search engine suffers from a radical variance in search performance over
different queries.
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been done in query difficulty estimation. For image retrieval,
the query and the returned images are in two different
domains: textual and visual respectively. This domain gap
makes it a challenge for image retrieval query performance
prediction. Besides, the textual description (image URL,
surrounding text, etc.) associated with the image is noisy
and insufficient to represent the rich content of images
completely. Thus it is hard to directly employ QDE methods
in text retrieval to predict query performance for image
retrieval.

Existing QDE methods in image retrieval mainly inves-
tigate the statistical characteristics (coherence, specificity,
etc.) of the search images returned for a given query and
then derive a value, such as clarity score [1], to indicate the
query difficulty level [7,8]. Li et al. [7] proposed a query
difficulty predictor by analyzing the prominence character
of the top ranked returned images. Tian et al. [8] measured
the tightness of the returned images to predict query
performance.

To the best of our knowledge, little work has been done to
directly estimate the real search performance, such as aver-
age precision, for a given query. One preliminary study was
performed in [9]. Nie et al. [9] calculated the mathematical
expectation of average precision by estimating the relevance
probability of each image returned to a given query. In this
method, each image's relevance probability is estimated via
the visual hyperlinks among the returned images. There
exists one major disadvantage in this work. Since the
returned results are not perfect, there is noise (mismatch,
irrelevant links, etc.) among images. With the noise being
continually propagated via visual hyperlinks, the final esti-
mated images' relevance probabilities are inaccurate.

In this paper, we propose a novel query difficulty
estimation approach for image retrieval. This method can
automatically estimate the average precision of the search
results returned to a given query. First, by utilizing pseudo
relevance feedback (PRF) [10] and adaptive selection, we
select a set of query relevant and query irrelevant images
for each query. Then a simple but effective voting scheme
and two different estimation methods are proposed to
estimate the relevance probability of each image in the
search results in responds to this query. Finally, based on
those images' relevance probabilities, the average preci-
sion of each query is derived.

The main contributions introduced in this paper are
summarized as follows. (1) We have proposed a novel
query difficulty estimation method to automatically pre-
dict the actual performance instead of only an indicator.
(2) We have proposed an adaptive pseudo positive image
selection method which solves the problem that how
many images should be assigned to different queries.
(3) We have proposed an efficient voting scheme to
estimate the image's relevance probability. (4) Our work
can be well applied to query difficulty estimation in
interactive image retrieval systems. By replacing PRF with
users' relevance feedback, the predicting performance can
be further improved.

The rest of this paper is organized as follows. Section 2
briefly introduces the related work. Our query difficulty
estimation approach is described in Section 3. Section 4
reports the experimental results, followed by the conclu-
sion in Section 5.

2. Related work

QDE has been of interest in the information retrieval
(IR) field for many years and its importance has been
widely recognized in IR community. In this section, we will
introduce the related work of QDE in text retrieval and
image retrieval respectively.

QDE in text retrieval can be roughly categorized to pre-
retrieval approaches and post-retrieval approaches. Pre-
retrieval QDE methods estimate the search difficulty
before the search takes place. He and Ounis [2] proposed
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and evaluated a range of pre-retrieval predictors, including
query length, the average inverse collection term fre-
quency (AvICTF), query scope, simplified clarity score
(SCS) and so on. Their experimental results showed AvICTF
and SCS were the two best-performing predictors. Imran
and Sharan [5] proposed two pre-retrieval predictors
based on the co-occurrence information among query
terms. It was assumed that higher co-occurrence of query
terms means more information conveyed, which leads to
lower query difficulty degree. Since pre-retrieval methods
do not need to perform retrieval, they are much efficient.

In contrast, post-retrieval QDE methods additionally
analyze the search results. Post-retrieval predictors mainly
investigate the characteristics of the top ranked retrieval
documents and can be divided into three categories:
clarity-based methods, robustness-based methods and
score distribution-based methods. Clarity-based predictors
explore the distribution difference between the top ranked
documents and the whole collection [1,23]. Clarity Score
(CS) [1] measures the KL-divergence between the query
language model of the top ranked documents and the
model of the collection. Hauff et al. [23] improved the
clarity score to solve the parameter sensitivity problem in
CS. Robustness-based methods quantify the query diffi-
culty by measuring the robust degree of the ranking list
[3,17]. Yom-Tov et al. [17] estimated the query difficulty by
measuring the agreement between the original ranking list
and the ranking list of the query's each constituent terms.
The idea behind this method is that for an easy query, the
result list may not change considerably if only a subset of
the query terms is used. Query Feedback [3] constructs a
new query from the top ranked documents of the initial
returned list. The overlap of documents in the initial list
and the new list generated by searching the new query is
used for query difficulty estimation. Score distribution-
based predictors analyze the retrieval scores of documents
in the result list [4]. Diaz et al. [4] measured the extent to
which similar documents receive similar retrieval scores to
indicate query performance. In general, post-retrieval
methods are usually more expensive as the search results
should be analyzed after retrieval, but are preferable to
pre-retrieval methods.

For QDE in image retrieval, little research has been
conducted. Xing et al. [6] adopted the textual information
(surrounding text, image URL, etc.) to predict whether a
query is difficult or easy. This method leverages the noisy
textual information and neglects the rich content of the
returned images. Li et al. [7] proposed a query difficulty
predictor, by linearly integrating the language model-
based clarity score, the spatial consistency of local descrip-
tors and the appearance consistency of global features.
Rudinac et al. [18] exploited the coherence of the top
ranked video to predict the query performance, for select-
ing the best video search result. Tian et al. [8] proposed a
set of features, including visual clarity score, coherence
score, representativeness score and visual similarity dis-
tribution feature, by analyzing the search results, and then
learnt a support vector regression model to predict the
query difficulty. Those three methods belong to the
QDE approach that investigates the statistical character-
istics of the returned images. The method QAPE (Query-
Adaptive Performance Estimation) in [9] utilizes the visual
hyperlinks among the returned images to estimate the
images' relevance probabilities to the given query and then
calculates the mathematical expectation of average preci-
sion. This method is the most related work to ours.
Different from this method, we estimate the relevance
probability of each image via the improved pseudo rele-
vance feedback and a simple but efficient voting scheme.
The experimental results demonstrate the effectiveness of
our method.

3. Query difficulty estimation via relevance prediction

The proposed approach automatically estimates the rele-
vance probability of each image in response to the query and
then derives the average precision. Fig. 2 illustrates the
framework of our approach. Given a query, a list of ranked
images is returned by the image search engine. We first
adaptively choose a set of pseudo positive (query relevant) or
pseudo negative (query irrelevant) images from the image
list. Then, we estimate the relevance probability for each
image in the list. With each image's relevance probability is
estimated, we can derive the average precision of the image
search results for each query.

In the proposed framework, there are two key compo-
nents: the pseudo positive and negative image selection,
and the relevance probability estimation for each image.
We will detail them in Sections 3.1 and 3.2 respectively.
Section 3.3 describes the average precision estimation.
Some important notations are presented in Table 1.

3.1. Adaptive positive and negative image selection

Automatically judging whether an image in the search
results is relevant to the query is very challenging. In order
to select positive or negative images, pseudo relevance
feedback (PRF) method [39] is often utilized. PRF is a
concept introduced from text retrieval. Its hypothesis is
that a fraction of the top-ranked documents in the search
results are pseudo-positive. Likewise, the pseudo-negative
images are usually selected from either the bottom-ranked
images or the database with the assumption that few
samples in the database are relevant.

The pseudo positive and pseudo negative image selec-
tion plays an important role in our method, and will
seriously affect the relevance probability estimation
step. PRF directly treats the top ranked or bottom ranked
images of the initial list as pseudo positive or pseudo
negative ones. Those selected images may be very noisy
and it is hard to determine how many images should
be selected. In order to solve those problems, we improve
the pseudo relevance feedback from the following three
aspects.

3.1.1. Initial search results reranking
Since the initial image search results are not perfect,

the images selected via PRF are noisy. In general, the better
the image search results are, the less the noise in selected
images will be. Thus, instead of directly applying PRF on
initial image search results, we rerank it to get better
search results. Here, any image search reranking methods



Fig. 2. The framework of the proposed approach. It contains three components: (1) adaptive pseudo positive and pseudo negative image selection: select
positive or negative images via improved pseudo relevance feedback; (2) relevance probability estimation: evaluating each image's relevance probability in
the search results via a voting scheme and two estimation methods; and (3) AP estimation: calculating the average precision of the search results for the
given query based on hard estimation or soft estimation respectively. The dashed line indicates that it is optional.

Table 1
Important notations and their descriptions.

Notations Descriptions

I¼ fIigNi ¼ 1 N images returned by the search engine for a given query Q, whereIiindicates the ith-ranked image
V ¼ fwig1000i ¼ 1 The vocabulary with 1000 visual words
K Number of positive or negative images selected via PRF
P0 ¼ fPkgKk ¼ 1 Positive (query relevant) image set
N0 ¼ fNkgKk ¼ 1 Negative (query irrelevant) image set
xi ¼ ½xi1; xi2 ; :::; xi1000 �T The vector representation of image Ii
sðIi ; IjÞ The visual similarity between IiandIi
p¼ fpigNi ¼ 1 The relevant probability set with N images returned for a given query Q

Q. Jia, X. Tian / Signal Processing 110 (2015) 232–243 235
can be applied [13,31–33,37,38]. Visual reranking [13],
which has been proven effective to refine the image search
results, is adopted in this paper. This initial search results
preprocessing step can efficiently reduce the noise in the
selected images. Pseudo positive or pseudo negative
images selected from the re-ranked search results contain
less noise and therefore can generate much better
performance.
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3.1.2. The selection of pseudo positive and negative
In PRF, both pseudo positive and pseudo negative

images are selected usually. In image retrieval, query
relevant images are alike while each irrelevant image is
irrelevant in its own way [24]. In other words, the number
of irrelevant images are vast and they scatter in the whole
space. The selected pseudo negative images are only a very
small subset of all irrelevant images. Meanwhile, pseudo
negative images may introduce some noise. By further
considering the role of pseudo negative images in the
following relevance probability estimation step, it is
doubtful whether pseudo negative images should be
involved. To verify its effect, we propose two selection
strategies:
�
 Select both pseudo positive and pseudo negative
images for the following relevance probability estima-
tion. Here we directly treat the top-K ranked images
and the bottom-K ranked images in the re-ranked list
as pseudo positive (relevant) and pseudo negative
(irrelevant) images respectively.
�
 Select the top-K ranked images as pseudo positive
(relevant) images only. There is no pseudo negative
image used for the following relevance probability
estimation since it may nearly have no effect on it.

3.1.3. Adaptive pseudo positive image selection
As aforementioned, the pseudo positive image selection

plays a crucial role in the whole method since all the
following steps are based on the selected images. One
important problem in pseudo positive image selection is
that howmany images we should select. We want to get as
many as possible relevant images with the least noise.
However, when K is too large, too much noise will be
involved. When K is too small, the selected pseudo positive
images are too few to well interpret the query, and thus
lead to unsatisfactory performance.

To solve this problem, we propose an adaptive pseudo
positive image selection method. This method can auto-
matically determine how many images should be selected
for different queries. Considering that the number of
relevant images in the top ranked search list for different
queries is varying, we had better adaptively set K for each
query. For those queries which have good search perfor-
mance with many relevant images returned, we can assign
a high value to K. While for others, a low value of K should
be given.

In order to achieve this goal, we adopt the CoS method
[18] to estimate the K value for each query. The experi-
mental results in [8] demonstrated that there is a positive
correlation between a large CoS value and a high average
precision for a given query. Meanwhile, a search list that
has a higher average precision usually contains more
relevant images in the top ranked search list. Thus, we
assume that a higher CoS value for a given query indi-
cates the top ranked returned results have more relevant
images. Then we derive the optimum Kn for each query
with a maximum CoS value, as shown in Eq. (1),

Kn ¼ argmax
KA ½L;M�

CoSðKÞ ð1Þ
where L and M are the minimum and maximum of K value
respectively. CoSðKÞ is defined as the ratio of coherent
pairs to all image pairs in the top-K-ranked images.
This adaptive pseudo positive image selection can effec-
tively avoid introducing noise (irrelevant images) to some
extent.

3.2. Relevance probability estimation

With the selected pseudo positive or negative images,
our approach intends to estimate the relevance probability
of each image in the initial search results. Previous works
in reranking [25–27] view the relevance probability esti-
mation as a classification problem. Various classifiers, such
as SVM [28], can be trained with the selected images to
categorize each image in the initial search results. Differ-
ent from these methods, we propose an efficient and
effective voting scheme, and two estimation methods to
estimate images' relevance probabilities in this paper.

3.2.1. Visual similarity measure
Before detailing the voting scheme and estimation

method, we first introduce the visual similarity measure-
ment. Given a query Q, let I¼ fIigNi ¼ 1 denotes the N images
returned by the image search engine, where Ii is the ith-
ranked image. For the image's visual representation, we
adopt the popular bag-of-visual-words (BOVWs) model
[11]. The SIFT local descriptors [12] are first extracted from
each image in the collection. Then a vocabulary with 1000
visual words is built by clustering all the local descriptors.
After quantizing local descriptors into visual words, each
image can be viewed as a visual document consisting of a
set of visual words. The V ¼ fwig1000i ¼ 1 denotes the visual
vocabulary with size 1000. We use the TF-IDF weighting
scheme [19] to measure each visual word's importance
and adopt the Vector Space Model [14] to represent each
image. The vector representation of imageIi is defined as
xi ¼ ½xi1; xi2; :::; xi1000�T with

xij ¼ tf ijnidf ij; i¼ 1;2; :::N; j¼ 1;2; :::;1000 ð2Þ
where tf ij is the frequency of visual word wj in image Ii
and idf ij is the inverse document frequency that quanti-
fies the importance of visual word wj over the image
collection.

Then we utilize sðIi; IjÞ to denote the similarity between
images Ii and Ij. In this paper, we adopt the cosine
similarity:

sðIi; IjÞ ¼
xi Uxj

‖xi‖‖xj‖
: ð3Þ

3.2.2. Voting scheme
It is widely assumed that if an image is query relevant,

it should be similar to other query relevant images and be
different from query irrelevant images [24]. Based on this
assumption, we propose a simple but very effective voting
method.

For a given query Q, we have selected a set of pseudo
positive or negative images in Section 3.1. Let P0 ¼
fPkgKk ¼ 1and N0 ¼ fNkgKk ¼ 1 denote the pseudo positive
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image set and pseudo negative image set respectively. For
the ith-ranked image Ii for Q, we compare it with the
images in P0 andN0. If the visual similarity between Ii and
Pk is larger than certain threshold μ, then Ii obtains a
positive vote. Likewise, a negative vote is given to Ii if the
visual similarity between Ii and Nk is larger than certain
threshold μ. The vote function can be written as:

voteþ
ik ¼

1; sðIi; PkÞ4μ

0; else

( )
; i¼ 1;2; :::;N; k¼ 1;2; :::;K

ð4Þ

vote�
ik ¼

1; sðIi;NkÞ4μ

0; else

( )
; i¼ 1;2; :::;N; k¼ 1;2; :::;K

ð5Þ
where voteþ

ik and vote�
ik respectively indicate the positive

vote and negative vote from the selected images. The
threshold μ is defined as that 70% of image pairs in the
whole image collection have smaller visual similarity than
this value.

Since the returned images are complex and the images
selected via PRF may be noisy, some votes from the
selected images casted to each image in the search results
are invalid. In order to obtain an effective voting scheme,
we add a decision mechanism. The decision mechanism is
described as: if a given image owns the majority of votes
from the pseudo positive or negative images, it obtains a
true positive or negative vote. Then we form the decision
function as:

rþi ¼ 1; ∑
K

k ¼ 1
voteþ

ik ZK=2

0; else

8><
>:

9>=
>;; i¼ 1;2; :::;N ð6Þ

r�i ¼ 1; ∑
K

k ¼ 1
vote�

ik ZK=2

0; else

8><
>:

9>=
>;; i¼ 1;2; :::;N ð7Þ

where rþi and r�i denote the final vote to an image by
pseudo positive and negative images respectively. The deci-
sion mechanism has the advantage of reducing noise (wrong
votes) via the average of votes from the selected images.

3.2.3. Estimating relevance probability
With the final positive or negative vote being casted to

each image in the search results, we intend to estimate
each image's relevance probability to the given query Q. In
this paper we design two different methods to estimate
the relevance probability, denoted as hard estimation and
soft estimation respectively. Here we denote pi as the
relevance probability of the ith-ranked image Ii.
(A)
 Hard estimation
We follow the assumption: a relevant query should be
visually similar to those positive images and be away
from those negative images. Then the hard estimation
is defined as:

pi ¼
1; if rþi ¼ 1 and r�i ¼ 0
0; else

( )
; i¼ 1;2; :::;N ð8Þ
From Eq. (8), it can be considered that we label an
image which obtains only a final positive vote as
relevance and others as irrelevance. Due to this char-
acteristic, we can directly apply the existing formula in
[8] to calculate the average precision.
(B)
 Soft estimation
As discussed in Section 3.1, here we only utilize the
pseudo positive images to estimate the images' rele-
vance probabilities. We employ the classification
thought and view each image in P0 as a classifier to
produce relevance score f kðIiÞ ð1rkrKÞ for any
images Iið1r irNÞ in response to the given query Q.
f kðIiÞ is set to 1 for positive vote and 0 for others from
the pseudo positive images, as shown in Eq. (4). Then
we adopt a logistic regression algorithm to combine
the outputs of all the K classifiers. Thus the soft
estimation is expressed as:

pi ¼
exp ∑

K

k ¼ 1
f kðIiÞ=K�0:5

 !

1þexp ∑
K

k ¼ 1
f kðIiÞ=K�0:5

 ! ; i¼ 1;2; :::;N ð9Þ

In summary, Algorithm 1 in Fig. 3 outlines our relevance
probability estimation method. It contains two steps. (1)
In the voting step, by comparing the visual similarity
between each image in the search list and the selected
pseudo images, we cast pseudo positive or negative
votes to each image. Then we determine whether those
votes are valid and give the final positive or negative
vote to each image. (2) In the estimating step, based on
the final vote, we evaluate the relevance probability of
each image in the initial search results via the hard
estimation or soft estimation.
3.3. Average precision estimation

Our main idea is to automatically estimate the average
precision of the image search results for each query. After
the aforementioned steps, we have obtained the relevance
probability of each image in response to the given query.
Based on those two relevance probability estimation
methods, we adopt two different average precision esti-
mation strategies.

For the hard estimation method, we directly utilize the
commonly used truncated average precision (AP) method
[8] to estimate AP, as shown in Eq. (10).

EAP@T ¼ 1
ZT

∑
T

i ¼ 1
relðiÞ1

i
∑i

j ¼ 1relðjÞ ð10Þ

where relðiÞ is the binary function on the relevance of the
ith-ranked image with “1” for relevant and “0” for irrele-
vant, ZT is a normalization constant that is chosen to
guarantee that EAP@T¼1 for the perfect ranking result
and T is a variable which indicates the truncation level.
Here we replace relðiÞ in Eq. (10) withpi estimated via hard
estimation to measure AP.

For the soft estimation method, we tend to calculate
the mathematical expectation of AP. Let pðrelðiÞ ¼ 1Þ
denotes the relevance probability of the ith-ranked image



AAlgorithm 1 Relevance Probability Estimation  

IInput { }I I ; Positive image set: { }P P ; Negative image set: { }N N

OOutput { }p p

Step 1: Voting Step

For each image I I

Compute vote by Equation (4);

If N = ∅

0vote =

Else

Compute vote by Equation (5);

End
End for
For i=1:N

Compute r by Equation (6);

If N = ∅

0r ;

Else 

Compute r by Equation (7);

End
End for

Step2 Estimating Step
For i=1:N

Estimate p by Equation (8) or (9);

End for

Return { }p p

Fig. 3. Algorithm details of implementations for relevance probability
estimation.
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Ii. Assume that the relevance of two images that are in
different positions of the returned list is completely
independent, then we derive the mathematical expecta-
tion of AP as:

EðAP@TÞ

¼ E
1
ZT

∑
T

i ¼ 1
relðiÞ

∑i
j ¼ 1relðjÞ

i

" #

¼ 1
ZT

∑
T

i ¼ 1
∑
i

j ¼ 1

E½relðiÞrelðjÞ�
i

¼ 1
ZT

∑
T

i ¼ 1

1
i

E½relðiÞ2�þ ∑
i�1

j ¼ 1
E½relðiÞrelðjÞ�

( )

¼ 1
ZT

∑
T

i ¼ 1

1
i

pðrelðiÞ ¼ 1Þþ ∑
i�1

j ¼ 1
pðrelðiÞ ¼ 1; relðjÞ ¼ 1Þ

( )

¼ 1
ZT

∑
T

i ¼ 1

1
i

pðrelðiÞ ¼ 1Þþ ∑
i�1

j ¼ 1
pðrelðiÞ ¼ 1ÞpðrelðjÞ ¼ 1Þ

( )

ð11Þ
Here we replace pðrelðiÞ ¼ 1Þ in Eq. (11) with pi estimated
via soft estimation to calculate the mathematical expec-
tation of AP.
4. Experiments

4.1. Dataset

We conduct experiments on a large public Web image
search dataset “Web353” available from [15]. This dataset
contains 71478 images returned for 353 queries. The 353
queries are diverse in topics, including landmark, animal,
plant, sports, flag, people and instruments, etc. For each
query, the top ranked images are collected by the search
engine [16]. And there are about 200 images on average for
each query. Each image is manually labeled as relevant or
irrelevant. Fig. 4 shows some examples in this dataset.

4.2. Ground-truth performance and correlation
measurements

To measure the effectiveness of the proposed method,
we calculate the correlation coefficients between the
estimated performance and the ground-truth perfor-
mance. In this paper, the ground-truth performance for
each query is measured based on manual relevance labels
via the commonly used truncated average precision (AP)
[8] in Web search. Fig. 5 illustrates the ground-truth search
performance in terms of AP@10 for each of the 353 queries
in Web353. For better view, in this figure the queries are
sorted in ascending order of AP. It shows the image search
system suffers from a radical variance in performance over
various queries.

As to the correlation measurements, there exist three
commonly used measurements, including the Pearson's r
liner correlation [20], non-parametric rank correlation
Kendall's τ [21] and Spearman's ρ [22]. All the above
three correlation coefficients vary from -1 to 1, where -1
means perfect reverse and 1 means perfect agreement.
In our experiment, all three correlation measurements are
adopted.

4.3. Baselines

To demonstrate the effectiveness of the proposed
method, we compare it with four QDE methods for image
search, including Visual Clarity Score (VCS) [8], Coherence
Score (CoS) [18], Representativeness Score (RS) [8], and
Query-Adaptive Performance Estimation (QAPE) [9]. VCS is
a variant of clarity score [1] applied to the image retrieval
query difficulty estimation. It measures query difficulty via
the KL-divergence between the language model of the
returned images and the language model of the whole
image collection, where a high divergence suggests an
“easy” query. CoS measures the portion of coherent image
pairs in the top ranked image results. A pair of images is
coherent if their visual similarity exceeds certain threshold
which is empirically set. This method assumes the tight-
ness of the top ranked images can indicate the search
performance. RS is defined as the mean of the density of
the top ranked images in the returned results. The density
of each image is estimated via kernel density estimation.
In general, a large RS corresponds to a well-performing
query. QAPE estimates the mathematical expectations of
average precision for each query via the relevance



Fig. 4. Example images in Web353 dataset.

Fig. 5. The AP@10 on each of the 353 queries. For better view, here
queries are sorted in ascending order according to their AP@10. This
figure shows that the performance of the image search engine varies
largely over different queries.
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probability of each image to the given query. The image's
relevance probability is estimated by utilizing the visual
hyperlinks among the returned images.
4.4. Experimental results

In this paper, we show the correlation coefficients
at several truncation levels for T, i.e. {AP@T, T¼10, 20,
40, 60}. The choice of T depends on the need in real
application.
4.4.1. Analysis of our approach
In this subsection, we intend to analyze the perfor-

mance of the proposed method. We first compare the
correlation coefficients of our method with and without
pseudo negative images, denoted as EAP_PN and EAP_P
respectively. Then we analyze our method with fixed and
adaptive K value for each query respectively.

4.4.1.1. Comparisons between EAP_PN and EAP_P. For the
proposed approach, the only parameter is K. We vary K
from 10 to 45 with interval 1, and observe that there is
little variance in our predicted performance. Thus, in this
experiment, we empirically set K¼15 for all queries.

Table 2 demonstrates the correlation coefficients of
EAP_PN and EAP_P. It shows that EAP_P achieves much
better performance than EAP_PN. The reasons are that: (1)
the images in the top T results might hardly bear resem-
blance to the pseudo negative images and then the pseudo
negative images have almost no effect on the voting
scheme; (2) the pseudo negative images might contain
some relevant images which will result in wrong votes.

From Table 2, we can also observe that soft estimation
outperforms hard estimation in most cases. This is because
the soft estimation method preserves more relevance
information of the returned results.

4.4.1.2. Comparisons between fixed and adaptive K value for
each query. As described in Section 3.1, we investigate
the effect of the number of pseudo positive images on
query difficulty estimation. For the fixed method, we set



Table 2
The correlation coefficient comparison of our approach with pseudo negative images (EAP_PN) and without pseudo negative images (EAP_P). Hard and Soft
respectively indicates the hard estimation and soft estimation. It shows that EAP_P achieves much better performance than EAP_PN. Meanwhile, we can
also observe that soft estimation outperforms hard estimation in most cases. The best performances are highlighted in bold.

T 10 20 40 60

Kendall's τ (P-value)
EAP_PN (Hard) 0.300 (7.8e-17) 0.287 (9.0e-16) 0.266 (8.4e-14) 0.253 (1.2e-12)
EAP_P (Hard) 0.304 (2.5e-17) 0.302 (2.6e-17) 0.274 (2.6e-14) 0.255 (8.7e-13)
EAP_P (Soft) 0.320 (5.4e-19) 0.305 (1.3e-17) 0.274 (1.7e-14) 0.256 (7.1e-13)

Pearson's r (P-value)
EAP_PN (Hard) 0.448 (7.6e-19) 0.445 (1.4e-18) 0.408 (1.5e-15) 0.390 (3.1e-14)
EAP_P (Hard) 0.450 (5.1e-19) 0.456 (1.4e-19) 0.417 (3.0e-16) 0.391 (2.6e-14)
EAP_P (Soft) 0.468 (1.4e-20) 0.459 (9.5e-20) 0.420 (2.1e-16) 0.390 (2.9e-14)

Spearman's ρ (P-value)
EAP_PN (Hard) 0.432 (1.6e-17) 0.415 (4.1e-16) 0.383 (8.7e-14) 0.367 (1.1e-12)
EAP_P (Hard) 0.438 (5.2e-18) 0.435 (9.1e-18) 0.395 (1.2e-14) 0.369 (8.2e-13)
EAP_P (Soft) 0.459 (8.4e-20) 0.444 (1.8e-18) 0.396 (1.0e-14) 0.369 (7.5e-13)

Table 3
The correlation coefficient comparison of our approach with fixed and adaptive K value. Hard and Soft respectively indicates the hard estimation and soft
estimation. From this Table we can see that the approach with adaptive K value and the soft estimation achieves the best results. Meanwhile, the method
with adaptive K value outperforms that with fixed K value. The best performances are highlighted in bold.

T 10 20 40 60

Kendall's τ (P-value)

Fixed (Hard) 0.304 (2.5e-17) 0.302 (2.6e-17) 0.274 (2.6e-14) 0.255 (8.7e-13)
Adaptive (Hard) 0.313 (2.7e-18) 0.304 (1.7e-17) 0.277 (9.0e-15) 0.259 (4.0e-13)
Fixed (Soft) 0.320 (5.4e-19) 0.305 (1.3e-17) 0.274 (1.7e-14) 0.256 (7.1e-13)
Adaptive (Soft) 0.333 (1.6e-20) 0.324 (1.1e-19) 0.286 (1.1e-15) 0.263 (1.6e-13)

Pearson's r (P-value)

Fixed (Hard) 0.450 (5.1e-19) 0.456 (1.4e-19) 0.417 (3.0e-16) 0.391 (2.6e-14)
Adaptive (Hard) 0.457 (1.2e-19) 0.458 (9.3e-20) 0.417 (2.9e-16) 0.391 (2.4e-14)
Fixed (Soft) 0.468 (1.4e-20) 0.459 (9.5e-20) 0.420 (2.1e-16) 0.390 (2.9e-14)
Adaptive (Soft) 0.482 (6.0e-22) 0.481 (8.0e-22) 0.432 (1.6e-17) 0.399 (5.6e-15)

Spearman's ρ (P-value)

Fixed (Hard) 0.438 (5.2e-18) 0.435 (9.1e-18) 0.395 (1.2e-14) 0.369 (8.2e-13)
Adaptive (Hard) 0.452 (3.2e-19) 0.444 (1.7e-18) 0.401 (4.7e-15) 0.374 (3.5e-13)
Fixed (Soft) 0.459 (8.4e-20) 0.444 (1.8e-18) 0.396 (1.0e-14) 0.369 (7.5e-13)
Adaptive (Soft) 0.480 (9.5e-22) 0.469 (1.0e-20) 0.414 (5.0e-16) 0.381 (1.2e-13)
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K¼15 for all the queries. For the adaptive method, in
this experiment, we empirically set L¼20 and M¼45
respectively.

Table 3 demonstrates the correlation coefficients com-
parison of the proposed method with two different K value
settings. From this Table we can see that the approach
with adaptive K value and the soft estimation achieves the
best results. Meanwhile, the method with adaptive K value
outperforms that with fixed K value. This indicates the
effectiveness of the proposed adaptive pseudo positive
image selection method.
4.4.2. Correlation coefficient comparison between our
approach and four baseline methods

The correlation coefficients and corresponding P-values
are given in Table 4. For VCS, CoS, RS and QAPE, we have
tried various parameter settings and we report their best
results.

From this Table, we can see that our approach outper-
forms baseline methods over all Ts consistently. The
P-values are far less than 0.05, which indicates that
the correlation between the predicting performance and
the actual performance is statistically significant. We also
observe that: with the increase of T, our method has a
constantly high Pearson's r correlation coefficient, which
implies our estimated average precision well matches the
ground-truth performance.

Among those four baselines, CoS provides the best
predicting performance. The correlation coefficients for
CoS with the retrieval performance become continuously
worse with the increase of T. The reason is that, when T
increases, more and more irrelevant images occur in the
top ranked list, making it more difficult to measure the
coherence of the returned images. For QAPE, our approach
has higher correlation coefficients than QAEP's. The reason
why QAPE does not work well is that: since the returned
images are complex and noise (mismatch, irrelevant links,
etc.) can be continually propagated via visual hyperlinks,
the image's estimated relevance probability is inaccurate.
For VCS, the correlation coefficients are much worse than
others. But the performance of VCS rises with the increase
of T. [1] explains the clarity method needs a great number
of documents to adequately measure the coherence of the
ranked list. Therefore, the performance of VCS is poor at a
small value of T.

4.4.3. Effectiveness of voting scheme
As discussed in Section 3.2, we can view the relevance

probability estimation as a classification problem. With the
selected pseudo images, different classifiers can be trained
to categorize each image in the search results. In order to



Table 4
Correlation Coefficients and P-value of Query Difficulty Prediction on the Web353 dataset. From this Table, we can see that our approach outperforms
baseline methods over all Ts consistently. Among those four baselines, CoS provides the best predicting performance. The best performances are
highlighted in bold.

T 10 20 40 60

Kendall's τ (P-value) VCS 0.119 (9.1e-04) 0.120 (7.6e-04) 0.132 (0.4e-05) 0.138 (1.1e-04)
CoS 0.318 (1.7e-19) 0.306 (1.6e-19) 0.252 (1.6e-12) 0.232 (8.0e-11)
RS 0.208 (7.4e-9) 0.200 (2.0e-08) 0.184 (2.4e-07) 0.188 (1.3e-07)
QAPE 0.241 (1.8e-11) 0.223 (3.8e-10) 0.140 (8.6e-5) 0.124 (4.8e-4)
Ours 0.333 (1.6e-20) 0.324 (1.1e-19) 0.286 (1.1e-15) 0.256 (7.1e-13)

Pearson's r (P-value) VCS 0.138 (0.009) 0.155 (0.0035) 0.187 (4.1e-04) 0.216 (4.4e-05)
CoS 0.453 (2.9e-19) 0.438 (o1e-50) 0.390 (3.0e-14) 0.353 (8.2e-12)
RS 0.313 (1.8e-9) 0.295 (1.6e-08) 0.268 (3.3e-07) 0.268 (3.3e-07)
QAPE 0.294 (1.7e-8) 0.263 (5.1e-7) 0.187 (4.3e-4) 0.203 (1.2e-4)
Ours 0.482 (6.0e-22) 0.481 (8.0e-22) 0.432 (1.6e-17) 0.399 (5.6e-15)

Spearman'sρ (P-value) VCS 0.173 (0.001) 0.182 (6.1e-04) 0.194 (2.4e-04) 0.202 (1.3e-04)
CoS 0.456 (1.7e-19) 0.447 (o1e-50) 0.365 (1.4e-12) 0.335 (1.0e-10)
RS 0.303 (6.2e-9) 0.294 (1.8e-08) 0.272 (2.2e-07) 0.276 (1.3e-07)
QAPE 0.361 (2.9e-12) 0.339 (5.9e-11) 0.204 (1.2e-04) 0.180 (6.6e-04)
Ours 0.480 (9.5e-22) 0.469 (1.0e-20) 0.414 (5.0e-16) 0.381 (1.2e-13)

Table 5
The correlation coefficients for our method using the voting scheme and SVM respectively. It shows our method has higher correlation coefficients than
SVM's, which indicates the effectiveness of the proposed voting scheme in query difficulty estimation. The best performances are highlighted in bold.

T 10 20 40 60

Kendall's τ (P-value) SVM 0.268 (8.6e-14) 0.248 (3.4e-12) 0.179 (5.6e-07) 0.133 (2.0e-04)
Ours (Hard) 0.313 (2.7e-18) 0.304 (1.7e-17) 0.277 (9.0e-15) 0.259 (4.0e-13)
Ours (Soft) 0.333 (1.6e-20) 0.324 (1.1e-19) 0.286 (1.1e-15) 0.256 (7.1e-13)

Pearson's r (P-value) SVM 0.384 (8.1e-14) 0.357 (4.3e-12) 0.260 (7.2e-07) 0.192 (2.8e-04)
Ours (Hard) 0.457 (1.2e-19) 0.458 (9.3e-20) 0.417 (2.9e-16) 0.391 (2.4e-14)
Ours (Soft) 0.482 (6.0e-22) 0.481 (8.0e-22) 0.432 (1.6e-17) 0.399 (5.6e-15)

Spearman'sρ (P-value) SVM 0.390 (2.9e-14) 0.366 (1.2e-12) 0.264 (4.9e-07) 0.197 (1.9e-04)
Ours (Hard) 0.452 (3.2e-19) 0.444 (1.7e-18) 0.401 (4.7e-15) 0.374 (3.5e-13)
Ours (Soft) 0.480 (9.5e-22) 0.469 (1.0e-20) 0.414 (5.0e-16) 0.381 (1.2e-13)

Table 6
Correlation coefficients and P-value of Query Difficulty Prediction on the MSRA-MM_V1.0 dataset. From the Table we can see that our approach achieves
the best results in almost all cases. Among those four baseline methods, CoS provides moderate performance, even better than ours at some Ts. Since this
dataset is much complex, the relevance probability estimated via QAPE is rather inaccurate, resulting in the poor predicting performance. The best
performances are highlighted in bold.

Method NDCG@20 NDCG@40 NDCG@60

Kendall's τ (P-value)

VCS 0.037 (0.660) 0.129 (0.121) 0.088 (0.292)
CoS 0.200 (0.018) 0.183 (0.028) 0.246 (0.003)
RS 0.150 (0.071) 0.174 (0.036) 0.204 (0.014)
QAPE 0.163 (0.050) 0.155 (0.063) 0.139 (0.095)
Ours 0.221 (0.018) 0.310 (5.0e-04) 0.316 (2.6e-04)

Pearson's r (P-value)

VCS 0.072 (0.562) 0.066 (0.591) 0.091 (0.459)
CoS 0.226 (0.064) 0.299 (0.013) 0.315 (0.009)
RS 0.164 (0.182) 0.199 (0.104) 0.226 (0.064)
QAPE 0.176 (0.152) 0.134 (0.277) 0.118 (0.338)
Ours 0.244 (0.045) 0.328 (0.006) 0.313 (0.009)

Spearman's ρ (P-value)

VCS 0.061 (0.619) 0.171 (0.164) 0.127 (0.303)
CoS 0.292 (0.016) 0.285 (0.018) 0.355 (0.003)
RS 0.207 (0.090) 0.261 (0.032) 0.284 (0.019)
QAPE 0.238 (0.051) 0.205 (0.094) 0.178 (0.147)
Ours 0.285 (0.017) 0.412 (4.8e-04) 0.438 (1.9e-04)
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demonstrate the effectiveness of our voting scheme in
query difficulty estimation for image retrieval, in this
paper we compare our method with SVM based relevance
probability estimation method. We have tried several
parameter settings for SVM with RBF kernel and reported
the best result. The experimental results are given in
Table 5. Here we present the results of our method with
hard estimation and soft estimation. It shows our method
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has higher correlation coefficients than SVM's, which
indicates the effectiveness of the proposed voting scheme
in query difficulty estimation.

4.4.4. Performance on MSRA-MM_V1.0
We also test our approach on the dataset of MSRA-

MM_V1.0 [29]. This dataset has 60257 images from Micro-
soft Live search for 68 representative queries. For each
image, its relevance to the corresponding query is labeled
with three levels: very relevant, relevant and irrelevant,
which are indicated by scores 2, 1 and 0 respectively. Here
we adopt the truncated normalized discounted cumulative
gain (NDCG) [30], which is widely used for graded rele-
vance judgments, to calculate the actual performance of
each query in this dataset. The other experimental settings
are the same as in Web353.

Table 6 demonstrates the correlation coefficient com-
parison between our approach and four baseline methods
with different performance metrics. From the Table we can
see that our approach achieves the best results in almost
all cases. Among those four baseline methods, CoS pro-
vides moderate performance, even better than ours at
some Ts. Since this dataset is much complex, the relevance
probability estimated via QAPE is rather inaccurate, result-
ing in the poor predicting performance.

5. Conclusion

In this paper, we propose a novel query difficulty
estimation approach for Web image retrieval. Our method
automatically estimates the average precision for each
query via improved pseudo relevance feedback and a
simple but effective voting scheme. Our method has the
advantage of estimating the returned images' relevance
labels (hard estimation) in response to the query, which
can be well applied to image labeling and image annota-
tion [34–36]. Experiments on two real Web image search
datasets demonstrate the effectiveness of our proposed
method.
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